503 research outputs found

    Complete high-precision entropic sampling

    Full text link
    Monte Carlo simulations using entropic sampling to estimate the number of configurations of a given energy are a valuable alternative to traditional methods. We introduce {\it tomographic} entropic sampling, a scheme which uses multiple studies, starting from different regions of configuration space, to yield precise estimates of the number of configurations over the {\it full range} of energies, {\it without} dividing the latter into subsets or windows. Applied to the Ising model on the square lattice, the method yields the critical temperature to an accuracy of about 0.01%, and critical exponents to 1% or better. Predictions for systems sizes L=10 - 160, for the temperature of the specific heat maximum, and of the specific heat at the critical temperature, are in very close agreement with exact results. For the Ising model on the simple cubic lattice the critical temperature is given to within 0.003% of the best available estimate; the exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu are given to within about 0.4% and 1%, respectively, of the literature values. In both two and three dimensions, results for the {\it antiferromagnetic} critical point are fully consistent with those of the ferromagnetic transition. Application to the lattice gas with nearest-neighbor exclusion on the square lattice again yields the critical chemical potential and exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu to good precision.Comment: For a version with figures go to http://www.fisica.ufmg.br/~dickman/transfers/preprints/entsamp2.pd

    Studies

    Get PDF
    This thesis consisted of three drawings in graphite pencil, three drawings in pencil with ink wash, and five bisque-fired clay pieces. This thesis was exhibited in the Weatherspoon Art Gallery of the University of North Carolina at Greensboro from April 24 through May 15, 1977. A 35mm color transparency of each work is on file at the Walter C. Jackson Library of the University of North Carolina at Greensboro

    Ground-State and Domain-Wall Energies in the Spin-Glass Region of the 2D ±J\pm J Random-Bond Ising Model

    Full text link
    The statistics of the ground-state and domain-wall energies for the two-dimensional random-bond Ising model on square lattices with independent, identically distributed bonds of probability pp of Jij=−1J_{ij}= -1 and (1−p)(1-p) of Jij=+1J_{ij}= +1 are studied. We are able to consider large samples of up to 3202320^2 spins by using sophisticated matching algorithms. We study L×LL \times L systems, but we also consider L×ML \times M samples, for different aspect ratios R=L/MR = L / M. We find that the scaling behavior of the ground-state energy and its sample-to-sample fluctuations inside the spin-glass region (pc≤p≤1−pcp_c \le p \le 1 - p_c) are characterized by simple scaling functions. In particular, the fluctuations exhibit a cusp-like singularity at pcp_c. Inside the spin-glass region the average domain-wall energy converges to a finite nonzero value as the sample size becomes infinite, holding RR fixed. Here, large finite-size effects are visible, which can be explained for all pp by a single exponent ω≈2/3\omega\approx 2/3, provided higher-order corrections to scaling are included. Finally, we confirm the validity of aspect-ratio scaling for R→0R \to 0: the distribution of the domain-wall energies converges to a Gaussian for R→0R \to 0, although the domain walls of neighboring subsystems of size L×LL \times L are not independent.Comment: 11 pages with 15 figures, extensively revise

    Acute Overactive Endocannabinoid Signaling Induces Glucose Intolerance, Hepatic Steatosis, and Novel Cannabinoid Receptor 1 Responsive Genes

    Get PDF
    Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel cannabinoid responsive genes

    Antibiotic resistance patterns and genotypes of Salmonellae within swine production systems and the relationship to on farm use of antibiotics

    Get PDF
    A total of 206 Salmonella isolates were obtained from fecal samples from swine and environmental sites and tested for antibacterial resistance. The most common resistances were to tetracycline, sulfamethoxazol, and streptomycin. Some isolates were resistant to as many as 9 antibiotics in the test panel. However, 31% were sensitive to all antibiotics, 15% were resistant to a single antibiotic, 30% were resistant to two antibiotics and 20% were resistant to 3 antibiotics. Salmonella isolates from the same farm that had the same pattern of antibiotic resistances also had the same PFGE genotype and serotype

    Continuously-variable survival exponent for random walks with movable partial reflectors

    Full text link
    We study a one-dimensional lattice random walk with an absorbing boundary at the origin and a movable partial reflector. On encountering the reflector, at site x, the walker is reflected (with probability r) to x-1 and the reflector is simultaneously pushed to x+1. Iteration of the transition matrix, and asymptotic analysis of the probability generating function show that the critical exponent delta governing the survival probability varies continuously between 1/2 and 1 as r varies between 0 and 1. Our study suggests a mechanism for nonuniversal kinetic critical behavior, observed in models with an infinite number of absorbing configurations.Comment: 5 pages, 3 figure

    WiSer: A Highly Available HTAP DBMS for IoT Applications

    Get PDF
    In a classic transactional distributed database management system (DBMS), write transactions invariably synchronize with a coordinator before final commitment. While enforcing serializability, this model has long been criticized for not satisfying the applications' availability requirements. When entering the era of Internet of Things (IoT), this problem has become more severe, as an increasing number of applications call for the capability of hybrid transactional and analytical processing (HTAP), where aggregation constraints need to be enforced as part of transactions. Current systems work around this by creating escrows, allowing occasional overshoots of constraints, which are handled via compensating application logic. The WiSer DBMS targets consistency with availability, by splitting the database commit into two steps. First, a PROMISE step that corresponds to what humans are used to as commitment, and runs without talking to a coordinator. Second, a SERIALIZE step, that fixes transactions' positions in the serializable order, via a consensus procedure. We achieve this split via a novel data representation that embeds read-sets into transaction deltas, and serialization sequence numbers into table rows. WiSer does no sharding (all nodes can run transactions that modify the entire database), and yet enforces aggregation constraints. Both readwrite conflicts and aggregation constraint violations are resolved lazily in the serialized data. WiSer also covers node joins and departures as database tables, thus simplifying correctness and failure handling. We present the design of WiSer as well as experiments suggesting this approach has promise
    • …
    corecore